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Notwithstanding concerns to the contrary,2 strategic nuclear deterrence, as understood in the 

context of mutually-assured destruction (MAD), is highly unlikely to be upset by advances in 

artificial intelligence (AI) in the foreseeable future. AI will improve the processes and systems 

that enable MAD and modern C4ISR (command, control, communications, computers, 

intelligence, surveillance, and reconnaissance), but advances in the field are unlikely to reach 

the sophistication, accuracy, and resilience required to disrupt nuclear deterrence as 

understood and practiced since the end of World War II. 

 

During the Cold War, MAD deterred nuclear aggression between the United States and Soviet 

Union by assuring that if either state attacked with nuclear weapons, both were certain that the 

attacked party could and would retaliate with nuclear weapons, resulting in the destruction of 

both states. “Assured” is the essential element of MAD—the targeted state must be known to 

possess survivable retaliatory nuclear forces. The Cold War saw the development and 

maturation of the modern nuclear triad, in which both sides deploy air, ground, and sea nuclear 

forces making a disarming first-strike practically impossible, all but assuring an unacceptable 

nuclear response. 

 

If a state did develop and operationally deploy a credible “counterforce” capability to prevent  

retaliatory nuclear attacks, the premise of MAD and nuclear deterrence would be 

fundamentally disrupted. While the notion of an unassailable counterforce has been considered 

technologically infeasible, recent advances in imaging platforms and AI may put it back on the 

table.3 Lieber and Press posit an increasing vulnerability of nuclear forces, owing to the 

improved accuracy of opposing nuclear delivery systems and a “revolution in remote sensing.” 

They warn that states facing “technologically advanced adversaries” will be particularly 

vulnerable, because “guidance systems, sensors, data processing, communication, artificial 

                                                             
1 The author thanks Wes Spain and Zack Davis at the Center for Global Security Research, Lawrence Livermore National 
Laboratory for their contributions to this assessment. 
2 Groll, Elias, “How AI Could Destabilize Nuclear Deterrence,” Foreign Policy, April 24, 2018. Accessed August 8, 2018, 
https://foreignpolicy.com/2018/04/24/how-ai-could-destabilize-nuclear-deterrence/; Geist, Edward and Andrew J. Lohn, “How 
Might Artificial Intelligence Affect the Risk of Nuclear War?”. Santa Monica, CA: RAND Corporation, 2018. 
https://www.rand.org/pubs/perspectives/PE296.html. 
3 Lieber, Keir A. and Daryl G. Press, “The New Era of Counterforce: Technological Change and the Future of Nuclear 
Deterrence,” International Security, Vol. 41, No. 4 (2017). 

https://foreignpolicy.com/2018/04/24/how-ai-could-destabilize-nuclear-deterrence/
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intelligence, and a host of other products of the computer revolution continue to improve” and 

may be integrated to form a robust counterforce capability.4 

 

While significant advances in guidance systems, sensors, data processing, and communications 

have shaped nuclear-weapon systems and counterforce capabilities, the role AI will ultimately 

play is less clear. AI may bring modest improvements in certain applications important to a 

credible counterforce capability—for example, in the finding, identifying, and precise locating of 

nuclear-weapon delivery platforms, especially mobile platforms such as missiles, aircraft, and 

submarines—but they are unlikely to fundamentally transform this part of the counterforce 

challenge. And because finding, identifying, and precisely locating adversarial nuclear-weapon 

delivery platforms will remain an unsolved problem, any improvement to a nation’s confidence 

in its counterforce capability will be modest. MAD-based nuclear deterrence is likely to persist 

for the foreseeable future. 

 

Limits of Artificial Intelligence for the Counterforce Challenge 
 
The counterforce challenge is daunting. A nuclear state would need an extremely high degree 

of confidence that it could identify and preemptively destroy or disable all adversarial nuclear-

weapon delivery systems capable of launching devastating retaliatory attacks. While a state 

may accept some risk associated with less than 100% certainty, if the intent of a counterforce 

attack is to disarm the adversary before it can attack with any nuclear weapons, then targeting 

certainty very near 100% is required. 

 

Near-perfect performance on the part of machines is limited to highly predictable and 

controlled environments. The surveillance and precision-munitions technologies would hold up 

well in their respective roles of providing imagery and neutralizing targeted weapons, because 

the physics that governs these operations is well-defined. However, AI’s role in the process, 

namely, the automated detection of weaponry, is based on an operation that is poorly 

understood— that of human vision. Quantum-computing pioneer David Deutsch proved that if 

the mechanics of sight were fully understood, they could be “emulated… on a general-purpose 

computer, provided it is given enough time and memory.”5 Without benefit of this insight, AI 

research has pursued diverse paths towards human-level intelligence.  

 

The best results for object-detection come from the AI subfield of machine learning (ML), 

particularly deep-learning (DL) methods. Based on results sufficiently impressive to fan an AI 

reawakening, DL could improve identification, reconnaissance, and surveillance performance to 

                                                             
4 Ibid., pp. 9-10. 
5 Deutsch, David. “Creative Blocks”, 2012, https://aeon.co/essays/how-close-are-we-to-creating-artificial-intelligence. 
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increase the transparency of an adversary’s nuclear arsenal, particularly if interleaved with 

human analysis. However, a careful delineation of the constraints inherent to the idea of a 

counterforce shows that AI cannot reliably perform image-recognition tasks at the near-perfect 

level required; it will encounter a number of fundamental and immutable ML theoretical limits, 

rendering automated detection a weak link in any counterforce.  

 

This analysis focuses on land-based mobile missiles only, deployed on transporter-erector-

launchers (TELs) or railroads—a challenging counterforce target that is representative of many 

countries’ nuclear order of battle.6  

 

AI is only as good as the data and information it was trained on and the data it is fed while 

operationally deployed. While advances in reconnaissance and surveillance systems have been 

impressive, the quantity and quality of data collected and processed still have limits. 

 

• Effective automated object recognition requires two elements: images of the objects in 

question and information pinpointing the objects within the image and their 

classifications. The image and labels are together termed the “ground truth.” The 

difficulty of collecting images with intelligence assets weakens any guarantee of 

continuous and sufficient access to ground-truth images. Any lapse in this pipeline may 

result in undetected changes to the design of the arsenal.  

• Lack of total access to the adversary’s nuclear arsenal limits the number of ground-truth 

images we can obtain. Even a free flow of information does not preclude the enemy 

from poisoning the data before we obtain it.7  

• Due to the limitations of other platforms, satellites will remain heavily relied on for the 

detection, identification, classification, and location of mobile launch systems. Satellites 

alone can provide persistent, or near-persistent, imaging of adversary land-based 

systems. This dependency limits the quality of images, in terms of resolution and variety 

of angles, as well as the quantity collected for ground truth. 

• The reconnaissance and surveillance systems required for credible counterforce will 

need to detect threats amid hundreds or thousands of vehicles simultaneously and 

recognize vehicles that are off road. Hence, AI will have to account for an extraordinary 

variety of terrains. 

• Detection and identification is not a static problem. Adversaries will continue to develop 

the camouflage, movement, and concealment of mobile weapons and employ decoys. 

 

                                                             
6 TELs are tracked or wheeled vehicles that move on- or off-road and are set up quickly to launch a ballistic missile. 
7 If our intelligence assets were strong enough with respect to a particular adversary that a continuous flow of ground-truth 
images were available, AI would not likely be necessary to track the adversary’s nuclear arsenal.  
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Data Challenges for Counterforce Mission 
 
The detection and identification processes of AI-enabled object recognition start with imagery-
collection systems inputting image data into our AI. According to Lieber and Press, current 
synthetic-aperture radar (SAR) provides clean, overhead images in 150-by-150 kilometer 
swaths, regardless of cloud cover or time of day.8  Upon detecting a vehicle, a magnified image 
is input to the AI9 system to determine the probability that it is a mobile launcher. The data 
quality for this task is poor for three reasons: it is imbalanced, a poor representation of a 
mobile weapon, and subject to the “curse of dimensionality.” 
 
Data Imbalance 
 
While the quantity of data input to AI will be large, the AI system will have relatively few 
ground-truth images of TELs or rail-based launchers to train on. Since assembling a dataset of 
adversary mobile launchers is a manual process, the number of correct original images to learn 
from will be relatively few and may not represent all models. This dearth may have subtle 
effects on AI results. Because it must distinguish between mobile launchers and other moving 
objects, the AI must be trained on images of commercial and other military (non-TEL) vehicles, 
for which there is an abundance of data. If the number of non-TEL images is much greater than 
the number of TEL images, this data imbalance will incentivize the AI to increase its accuracy by 
rarely or never identifying a mobile launcher.10  
 
Recent developments address the problem of imbalance by taking smaller datasets and 
expanding them by creating variations of each data point or “synthetic data”.11 We can take an 
image of a mobile launcher and warp it several different ways, thereby generating additional 
images for each image we possess. Training the AI on this additional data expands its concept of 
a mobile launcher, leading to the identification of TELs that would otherwise go unflagged. 
However, this method of increasing the number of correctly identified objects, or “true 
positives,” comes at a cost. A portion of the synthesized images will, according to the AI, look 
similar to non-TEL vehicles.12 The AI will classify these vehicles as mobile launchers, 

                                                             
8 Lieber, Keir A. and Daryl G. Press, pp. 38-39. 
9 Most likely the AI would employ a neural network, in which case the neurons in the neural network would be picking out 
different features of the image. 
10 AI is trained on data we already have. The training process is a methodical tweaking of AI parameters to improve accuracy on 
the training data. Consider the case where 1% of our training images are of TELs. The AI can achieve 99% accuracy simply by 
classifying each image as a non-TEL. It is likely that the resulting parameters would be significantly different than those of AI 
that properly classifies the 1% TEL images. (The latter AI may or may not have high accuracy on non-TEL images.) Therefore, a 
tension will generally exist between training for high overall accuracy or high accuracy with respect to TEL images. 
11 Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua 
Bengio. "Generative adversarial nets." Advances in Neural Information Processing Systems, (2014): 2672-2680 . 
12 All CV algorithms work the same in that they compute a “distance” between images where images that are close together are 
grouped into the same class. However, the groupings are rarely clean. Many examples appear to belong equally likely to 
multiple classes. In the case of recognizing mobile missiles, the images will fall along some sort of continuum of probabilities of 
being a TEL. See Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55, no. 
10 (2012): 83.  
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precipitating an increase in false positives. This leads to three complications. First, the total 
number of false and true positives cannot exceed the number of neutralizing weapons we 
possess.13 Second, no matter how liberal the AI becomes in identifying targets, at no point will 
we be fully certain of having identified all true targets. Third, without the ability to distinguish 
between false and true positives, all targets will need to be neutralized. Thus, not only does this 
“shotgun” approach lead to intolerable social, political, and environmental costs, but it does 
not reach the standard of target precision required for counterforce. 
 
Poor Representation 
 
An image is a poor stand-in for what really differentiates vehicles: their function or role. The 
primary role of a vehicle’s structure is to support its function rather than inform about its 
function. As persons, we may employ concept learning to induce a vehicle’s role from its 
exterior characteristics, but AI is very much in its infancy with respect to concept learning. It is 
much more successful in domains where the primary purpose of an object’s structure is to 
inform, most notably in handwriting recognition, natural-language processing, and speech 
recognition. Because alphanumeric characters possess well-known properties, they are visually 
differentiable, in contrast to vehicles. The methods largely responsible for the AI re-
awakening—convolutional neural networks (CNNs) and deep neural networks (DNNs)14—were 
designed to efficiently exploit data “regularity.”15 Because the exterior of a vehicle provides 
limited information as to function, we cannot expect the same level of results in detecting TELs. 
 
The Curse of Dimensionality 
 
Another complication is that a two-dimensional, pixelated image is a poor representation of a 
three-dimensional object. From certain angles, a TEL may exactly resemble water and oil 
tankers or other tractor trailers. Rail-based launchers may look like regular train cars. Increasing 
pixel resolution and taking several images of a vehicle at different angles (possibly to form a 
three-dimensional model) would give better accuracy, but at high cost and diminishing returns. 
Increasing pixel resolution leads to the curse of dimensionality—the phenomenon by which 
correct AI learning “becomes exponentially harder as the… number of features… of the 
examples grows.”16 
 
The curse of dimensionality dictates that increasing the resolution of an image from, say, 28 x 
28 to 32 x 32 will increase the size of each data sample while requiring exponentially more 

                                                             
13We can push the AI to have a more liberal view of what constitutes a TEL through additional synthetic data, but only to the 
point where the number of targets identified is less than our ability to neutralize them.   
14 DNNs refer to neural networks with many layers of neurons. CNNs refer to neural networks in which the neurons process 
their inputs by combining them in ways that will show local patterns in the data. 
15 Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural 
Computation, Vol. 18, No. 7 (2006): 1527-1554; Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification 
with deep convolutional neural networks." Advances in neural information processing systems, pp. 1097-1105. 2012; and 
LeCun, Yann. "Generalization and Network Design Strategies." Connectionism in Perspective (1989): 143-155. 
16 Domingos, pp. 78-87. 
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samples.17 The required exponential growth in memory will be accompanied by an exponential 
growth in running time for the AI.  
 
The second consequence of the curse of dimensionality is more subtle. As resolution increases, 
the AI may initially detect clear patterns, but this performance will be overtaken eventually by a 
tendency for the images to look identical to the AI.18 That is, images of similar objects will 
become dissimilar to the AI, while images of different and unrelated objects will grow more 
similar. We lack efficient ways for the AI to distinguish images with very high resolution. This 
runs counter to our own concept of thinking, by which we keep important information and 
discard the irrelevant. The mechanics of this process are not completely understood, and we 
are currently unable to replicate it with AI, given the limits of mathematical theory.  
 
Breakthroughs such as decision trees, support vector machines, and deep learning have 
introduced novel, flexible discriminators. However, they all create a separating hyperplane, an 
idea based on Gauss’s least squares. With this method, objects that are similar are closer 
according to some metric; objects that are dissimilar are farther apart; and a boundary 
separates the different objects. In high dimensions, clear separations become harder, because 
all data points gravitate towards the periphery of the hyper-dimensional cube.19 
 

Limits to Counterforce Performance Improvement 
 
These data limitations reveal a gap between reality and the information we receive through 
pixels. The question arises whether a high-powered AI can compensate for data deficiencies—
can a clever AI identify clear patterns, even with imperfect data. To a degree, yes, but not well 
enough for counterforce standards. Five obstacles block our solving of the counterforce 
challenge through AI: irreducible error, no free lunch (NFL), adversarial exploitability, lack of a 
priori knowledge, and lack of feedback. 
 
Irreducible Error 
 
AI capability is limited by the quality of its data. Because no data can fully describe real-world 
problems, every problem carries irreducible error, based on incomplete and imperfect 
measurements.20 To maximize performance given this limitation, we must decide how much we 
want the AI to learn from the data. How many data patterns should the AI incorporate into its 
decision making? The knee-jerk response may be “all of them.” But some patterns are due to 
random events or noise, while others occur only in the data the AI is trained on. If the AI simply 
“memorizes” the data in the training set, it may catastrophically fail when seeing new data.21 

                                                             
17 Ibid. p. 82. 
18 Ibid. p. 82. 
19 Ibid. p. 82. 
20 For problems in which we have complete and consistent information, there may be no irreducible error. However, these 
rarely occur in real-world settings, much less in the global-security domain. 
21 This is the concept behind the saying “Torture the data enough and it will confess.” If a very complex learner is trained on 
data, it will learn patterns that do not exist, within the noise. Hence, the confession will be nonsense at best and lies at worst. 
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On the other hand, if we design the AI to learn only a few strong patterns, it may perform 
poorly—though not catastrophically poorly—on any image it sees.22 Unfortunately, the 
counterforce problem leaves little room for error in striking this balance, which is referred to as 
the bias/variance tradeoff.  
 
No Free Lunch  
 
NFL is a simple concept with vexing implications. Consider the tools in an auto mechanic’s 
garage. Each is designed for high performance in a specific, yet limited range of applications. 
For example, needle-nosed pliers work well for extracting objects from small crevices. But the 
narrow pincers cannot apply torque when unscrewing large bolts. Specialization requires 
tradeoffs; there is no one tool that is best for any given task. Likewise, there is not one AI 
algorithm that can outperform all others, solving all possible problem sets. 23 For example, we 
cannot say that neural networks are universally better at learning tasks than decision trees. 
There are no free lunches in ML.24 
 
The implications of NFL significantly restrict AI performance. Because no one method is 
universally best, we will have to experiment with different models to find the method most 
suitable for the counterforce problem. Since there is an infinite number of models,25 there can 
be no systematic approach to finding a model that perfectly learns the data. Even if a model 
were found that performs perfectly on the data we have, we cannot guarantee perfect 
performance on images it will see later. Invariably, we will have trained an AI that exhibits some 
error. 
 
Adversarial Exploitability 
 
There are indirect consequences to NFL. Since no AI is universally superior, even the perfect AI 
for identifying mobile weapons will fail if the adversary conceals, camouflages, or changes the 
appearance of its TELs and rail-based units, or poisons the data that leaks out. In fact, a high 
degree of accuracy exposes our AI to catastrophic failure. To obtain high accuracy, the AI must 
find those complex patterns highly correlated with known vehicle types. When the appearance 
of mobile weapons is changed, the complex patterns learned by the AI become irrelevant, and 
weapons go undetected.26 The burgeoning research on adversarial AI has demonstrated how 
susceptible state-of-the-art methods are to being fooled. 27 Furthermore, we can count on 

                                                             
22 This bias/variance tradeoff can be addressed somewhat by ensembles. See Domingos, p. 85. However, while variance 
decreases, bias is somewhat increased. Given our low margin for error, an increase in bias would be intolerable. 
23 Wolpert, David H. "The Lack of A Priori Distinctions Between Learning Algorithms." Neural Computation, Vo. 8, No. 7 (1996): 
1341–1390. 
24 Ibid. 
25 Many methods have infinite variations.  
26 This harkens back to the bias/variance tradeoff. Because the AI is so specific to what it has seen, an adversary simply has to 
change up its vehicle models to fool the AI. A “dumber” AI with higher bias will perform more consistently in the face of 
changes, albeit at consistently lower accuracy. 
27 Three seminal works are Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, 
and Rob Fergus. "Intriguing Properties of Neural Networks." arXiv preprint arXiv:1312.6199 (2013); Goodfellow, Ian J., Jonathon 
Shlens, and Christian Szegedy. "Explaining and Harnessing Adversarial Examples (2014)." arXiv preprint arXiv:1412.6572.; and 



 

 
8 

 

adversaries to apply the denial and deception practices common to virtually all military forces, 
especially for strategic systems like nuclear-weapon delivery platforms—further straining any 
increase in confidence in counterforce capabilities.  
 
The evolving nature of an adversarial environment greatly reduces the amount of knowledge 
we can use to tailor our AI to recognize weaponry and may render such tailoring a liability if it is 
based on deceptive information intentionally leaked. Unless we can account for all the ways an 
adversary may conceal, camouflage, or alter its mobile arsenals, we must resort to a very 
general AI model to avoid catastrophic error, a model whose performance falls well below the 
counterforce standard. 
 
Lack of A Priori Knowledge 
 
AI methods are much more effective when tailored to a specific problem. As LeCun states in 
introducing CNNs, “It is generally accepted that good [accuracy] on real-world problems cannot 
be achieved unless some form of a priori knowledge about the task is built into the system.”28 
The more we know about the nature of the objects we are trying to detect from images, the 
more we can design our AI around this knowledge and obtain higher accuracy. For example, the 
convolutional layers of the CNNs used for handwriting recognition are designed to recognize 
the curves, lines, and even ink spots common to documents in a particular language. A priori 
knowledge in the counterforce problem is not so easily obtainable, clean, and concise. We are 
limited in the amount of reliable a priori knowledge we can obtain for two reasons: first, the 
adversary will constantly conceal, camouflage, and change the design of its mobile launchers 
and poison data; second, because form does not fully reveal purpose, we are limited in tailoring 
an AI to perceive vehicle type based on images. Because function cannot be fully represented 
by an image, it cannot be fully learned by AI. 
 
Lack of Validation 
 
The one-shot nature of a counterforce strike means that before launch there is no way to 
validate that the AI will work.29 The full deployment of kinetic weapon systems is preceded by 
rigorous testing, including live deployment at testing sites and introduction into actual combat 
situations on a small scale. This process exposes many malfunctions undetectable in the course 
of development or the laboratory. With feedback, the weapon is fine-tuned until malfunctions 
virtually cease. Real-world deployment validates that a system functions as designed.30  

                                                             
Papernot, Nicolas, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. "The Limitations of 
Deep Learning in Adversarial Settings." In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on Security and 
Privacy, pp. 372–387. For an approachable summary, see Goodfellow, Ian, Patrick McDaniel, and Nicolas Papernot. "Making 
Machine Learning Robust Against Adversarial Inputs." Communications of the ACM, Vol. 61, No. 7 (2018): 56–66.  
28 LeCun, p. 143. 
29 NFL theorems go even deeper. NFL implies that having perfect accuracy while training our AI to detect TELs does not 
guarantee perfect performance when going live. 
30 There are instances when the debut of a weapons systems occurs in a large-scale conflict in which it appears to perform 
practically flawlessly. For example, General Norman Schwarzkopf stated that the cutting-edge equipment introduced in the first 
Gulf War performed “beyond [their] wildest expectations.” See Schwarzkopf, Norman. It Doesn't Take a Hero: The 
Autobiography of General Norman Schwarzkopf. Bantam, 2010.pp. 582–583. However, not all systems worked to perfection in 
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ML systems require the same process. Testing a counterforce AI with data we possess is not the 
same as deploying it against an adversary’s nuclear arsenal. The data processed in live action 
may be different. Recent research in adversarial AI reveals disturbing blind spots, characterized 
by a brittle, narrow understanding of environments.31 Illustrations of the types of images that 
fool state-of-the-art methods easily expose the limits of AI understanding32 and the risk of 
catastrophic failure should a blind spot be exposed in an unanticipated circumstance. Only the 
live deployment of an AI can provide the quality of feedback necessary to establish its 
effectiveness. Unfortunately, for counterforce AI this will mean the presence or absence of a 
retaliatory strike. 
 

Faulty AI Paradigms 
 
Given these limitations, why is AI so appealing among some deterrence analysts and 
policymakers? It is not for lack of insight, experience, or acumen—on the contrary, their 
abilities and foresight tend to draw them to AI. Having successfully embraced technological 
changes in the past, these experts seek to do the same with this new tool. AI, however, is 
different from any other technology or resource we have exploited before. Past technologies 
derived their power principally from, and were limited by, the physical world—properties that 
are familiar and intuitive. AI lives principally in the computational world, which is very different 
from the physical and non-intuitive. Unfamiliarity with the computational world encourages 
three false paradigms regarding AI. 
 
Paradigm 1: AI Solutions as Scalable 
 
AI, and computation in general, deals with the notion that as problems become more difficult, 
the resources required to solve them grow exponentially. Intuition breaks down when 
attempting to comprehend the intractability of some problems, because sustained exponential 
growth in natural or human phenomena is not perceptible;33 thus we have little context for it. 
When thinking about how long it will take to scale up a solution to solve a more complex 
problem, given the current rate of hardware and software improvement, we assume the 
familiar linear rate of growth. But exponential growth in the demands on resources is inevitable 
and quickly insurmountable. For example, solving the travelling-salesman problem (TSP)34 for 
10 cities can be done on virtually any laptop in a matter of seconds. Solving the TSP for 120 
cities requires a supercomputer with as many processors as there are atoms in the universe - 

                                                             
that conflict. For example, a program for using satellite imagery and special forces to target SCUD missile launchers resulted in 
no confirmed kills. See Gordon, Michael R., and Bernard E. Trainor. Cobra II: The Inside Story of the Invasion and Occupation of 
Iraq. Pantheon, 2006, p. 179.  
31 Goodfellow, et al., “Explaining and harnessing adversarial examples.” 
32 See the following two links: http://goo.gl/huaGPb, http://www.evolvingai.org/fooling. 
33 Dasgupta, S., Papadimitriou, C., Vazirani, U., Algorithms, McGraw-Hill, 2006, pp. 233–234. 
34 This is a classic problem where a salesman must visit 𝑛 cities exactly once. Solving the problem requires finding a sequence of 
visits that results in the least total mileage. This generic problem has many real-world applications. 
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each of which must test a trillion routes per second. This supercomputer would have to run 
longer than the age of the universe to solve the problem.35  
 
There are ways to scale up AI solutions, but they require tradeoffs. Generally, an efficient 
solution comes at the expense of accuracy. In the case of the TSP, an efficient solution may be 
obtained in minutes, but it would not necessarily be best. Just as medicines cure ailments but 
produce side effects, scaling up AI solutions trades one set of problems for another. 
 
Paradigm 2: Learning Patterns is Sufficient 
 
Armstrong et al. state that “high-level reasoning requires little computation, but low-level 
sensorimotor skills require enormous computational resources.”36 That is, the former—human-
level intelligence—is much different from the latter—machine intelligence. AI may be trained to 
where it exceeds human performance in a narrowly defined problem, but as stated by 
Goodfellow et al., “classifiers based on modern ML techniques, even those that obtain excellent 
performance, … are not learning the true underlying concepts that determine the correct 
[classification].”37 Through a capability called “concept learning” (whose mechanics are not 
completely understood), when solving problems we learn high-level concepts with relatively 
little data that are applicable to other problems.38 This gives our knowledge a breadth that AI 
does not possess.39 AI is not accompanied by the safeguards of common sense. 
 
Unfortunately, intuition fails us in not making this distinction. When seeing an impressive AI 
result, we associate the AI behavior with human-level intelligence and an elegant, rich concept 
of the domain in question that it does not possess. We embrace the upside of the AI while not 
perceiving its restrictions. Specifically, success at one task is not necessarily transferable to 
another task. There is, in fact, a high likelihood of catastrophic failure if the AI is exposed to 
new environments. The recent surge in adversarial-AI research highlights the unstable nature of 
state-of-the-art ML methods. For example, instead of CNNs drawing intuitive decision 
boundaries among dissimilar images, almost-indiscernible changes in images can lead to 
misclassification.40 
  

                                                             
35 Jarvis, Tyler J. "That’s how the light gets in." BYU Magazine, Fall (2013): p. 24. 
36 Armstrong, Stuart, Kaj Sotala, and Seán S. ÓhÉigeartaigh. "The errors, insights and lessons of famous AI predictions–and what 
they mean for the future." Journal of Experimental & Theoretical Artificial Intelligence, Vol. 26, No. 3 (2014): 331.  
37 Goodfellow, et al., “Explaining and harnessing adversarial examples”, p. 2. 
38 Lake, et al., “Building machines that learn and think like people”, pp. 3-9. 
39 Recently, researchers developed AI that possessed a level of concept-based learning. The methods are currently confined to 
simpler domains. Refer to Lake, et al., “Human-level concept learning through probabilistic program induction”.  
40 As stated elegantly by Goodfellow, et al., “These algorithms have built a Potemkin village that works well on naturally 
occurring data, but is exposed as a fake when one visits points in space that do not have high probability in the data 
distribution. This is particularly disappointing because a popular approach in computer vision is to use convolutional network 
features as a space where Euclidean distance approximates perceptual distance. This resemblance is clearly flawed if images 
that have an immeasurably small perceptual distance correspond to completely different classes in the network’s 
representation.” From “Explaining and Harnessing Adversarial Examples” 
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Paradigm 3: AI as Magic 
 
Unlike the life sciences where there is some mystery as to how biological systems live, the 
mechanics of AI are fully known. As Pedro Domingos states, “Machine learning is not magic; it 
cannot get something from nothing.”41 AI’s autonomous reasoning is limited to induction, a 
form of inference that is inferior to human conjecture and criticism.42 It first requires data—a 
certain kind of data—for effective predictions. The data must be labeled, each datum 
associated with a classification. This data is generally abundant in the digital world, e.g., clicked-
through rates, online purchases, number of likes on a post, but is not ready made for real-world 
problems.  
 
Second, AI is limited as to what it can infer from data, owing to the relatively few number of 
higher-level mathematical concepts on which computational-learning theory is built.43 These 
concepts allow us to squeeze only so much information out of data. 
 
These paradigms are not new, nor is overestimation of AI. Generally, AI breakthroughs on a 
well-defined and specific problem, or narrow AI, will lead to speculation on impending artificial 
general intelligence (AGI). Armstrong et al. reference a study that surveyed five years of papers 
that contained a prediction as to when human-level artificial intelligence would be reached. 
There was a strong tendency among the papers, regardless of the year of publication, to predict 
such intelligence as 15–25 years away.44 Lost in the hype is the incongruency between more-
general and more-complicated problems. 
 
Faulty Paradigms in the Counterforce Problem 
 
Recent talk of AI as a potential solution to the counterforce problem has increased with 
advances in CNNs. In the late 1980s, Yann LeCun introduced CNNs as an improvement over fully 
connected neural networks because CNNs could incorporate human expertise into their design. 
This promise came with a warning that CNNs would be most suitable for domains that have 
clear, static patterns. In LeCun’s words, “In the general case specifying such knowledge may be 
difficult, [but] it appears feasible on some highly regular tasks such as image and speech 
recognition.”45 Geoffrey Hinton introduced an efficient implementation of DL and CNNs in the 

                                                             
41 Domingos, p. 81. 
42 Deutsch. “The prevailing misconception is that by assuming that ‘the future will be like the past’, it can ‘derive’ (or 
‘extrapolate’ or ‘generalize’) theories from repeated experiences by an alleged process called ‘induction’. But that is 
impossible.” Deutsch quotes philosopher Karl Popper as saying, “We do not discover new facts or new effects by copying them, 
or by inferring them inductively from observation, or by any other method of instruction by the environment.” 
43 A short list of the major concepts includes the Turing machine (computability), singular-value decomposition, least squares, 
fast Fourier transform, central-limit theorem, and gradient descent. Most concepts used in AI are based on these concepts, a 
variation of them, or an auxiliary support to them.  
44 Armstrong, et al., p. 12. 
45 LeCun, p. 144.  
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mid 2000s46 and, as predicted by LeCun, by 2012 breakthroughs had occurred in image47 and 
speech recognition.48 It appeared that CNNs magically found data patterns that were 
imperceptible to humans. Although the tasks mastered by these neural networks were simpler 
than the counterforce problem, it was assumed that their success could be scaled to much 
more difficult problems. For example, the success of Google researchers in incorporating DL 
into AlphaGo49 and beating world-class Go masters led to speculation that a similar program 
could regulate human systems. 50  
 
Juxtaposed with these landmark events, however, was research in adversarial AI suggesting 
blind spots in DL that make them susceptible to tampering by an adversary—a particularly 
damning finding for the counterforce problem. Furthermore, no level of testing, data 
generation, or data verification could fully eliminate the blind spots.51 This may seem odd, 
because seeing just a few images of a particular vehicle at various angles allows us to 
distinguish it from other vehicles. Our minds form rich concepts of complex objects with 
relatively little data.52 AI can do this with only very simple objects at this time,53 and there is no 
clear path for scaling up to more complex objects.54 CNNs were not learning core concepts from 
data and, thus, had no common sense with respect to the problem they were evaluating.55 
Partly covering the blind spots ultimately requires the generation of synthetic data, exhaustive 
testing, and experimentation with different neural-network architectures. Thus, while DL solves 
one problem for a counterforce AI (feature engineering),56 another problem takes its place 
(covering the blind spots). 
 

Improving Capabilities Through a Hybrid Approach 
 
In May 2017, RAND held a workshop that explored the possibility of AI’s enabling a 
counterforce strike. Among distinguished experts, two views emerged. A group consisting 
mainly of nuclear-security experts believed AI could enable counterforce. Another group, 

                                                             
46 Hinton, et al., “A Fast Learning Algorithm for Deep Belief Nets.” 
47 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet Classification with Deep Convolutional Neural Networks." 
Advances in Neural Information Processing Systems. 2012: 1–9. 
48 Hinton, Geoffrey, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior et al. "Deep 
Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups." IEEE Signal 
Processing Magazine, Vol. 29, No. 6 (2012): 82–97. 
49 Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser et al. 
"Mastering the Game of Go with Deep Neural Networks and Tree Search." Nature, Vol. 529, No. 7587 (2016): 484. 
50 Wang, Fei-Yue, et al. "Where does AlphaGo Go: From Church–Turing Thesis to AlphaGo Thesis And Beyond." IEEE/CAA 
Journal of Automatica Sinica 3.2 (2016): 113–120. 
51 Goodfellow, Ian, Patrick McDaniel, and Nicolas Papernot. "Making machine Learning Robust Against Adversarial Inputs." 
Communications of the ACM 61.7 (2018): 63–65. 
52 This comes from the ability to associate information with other, even seemingly unrelated, sources. It is not clear how our 
minds do that at this time. 
53 Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "Human-Level Concept Learning Through Probabilistic 
Program Induction." Science 350.6266 (2015): 1332–1338. 
54 Lake, Brenden M., Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. "Building Machines That Learn and 
Think Like People." Behavioral and Brain Sciences 40 (2017), p. 1. Specifically, Lake et al. state, “Truly human-like learning and 
thinking machines will have to reach beyond current engineering trends in both what they learn and how they learn it.”  
55 Goodfellow, et al. “Explaining and Harnessing Adversarial Examples,” p.2. 
56 LeCun, Yann, Yoshua Bengio, Geoffrey Hinton, “Deep Learning,” Nature, Vol. 521 (2015): 436. 
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composed of participants with a more technical AI background, thought object-recognizing AI 
would be limited, because an adversary could manipulate images to fool it.57  
 
Our response is that AI will not lead to reliable counterforce, but not because of adversarial 
manipulation. Limits in the quality and quantity of data, coupled with the inherent limitations of 
ML algorithms in an evolving, deceptive domain, will prevent AI from obtaining the nearly 
perfect performance required for counterforce.  
 
We emphasize that the high standard of near-perfect identification of an adversary’s arsenal 
precludes reliance on AI. However, were we to focus on the more reachable goal of increasing 
the transparency of the arsenal, we could exploit Moravec’s paradox (“Everything easy for a 
human is hard for a computer and everything hard for a computer is easy for a human”) to 
develop a division of labor in which human analysts and computational units each do what is 
easy for them and hard for the other. A careful integration of the human and machine systems 
allows for a maximal exploitation of available data.58 The result would not even approach what 
is required for counterforce, but would exceed what human analysts or AI could achieve alone. 
 
 
 
 
 

                                                             
57 Geist, Edward and Andrew J. Lohn, “How Might Artificial Intelligence Affect the Risk of Nuclear War?” 
58 For a superb example of how human and machine systems can be interleaved, see Hope, Bradley. "Inside a Quant 'Alpha 
Factory' --- Igor Tulchinsky's Company is Part of a Renaissance in Quantitative Investing." Wall Street Journal, Apr 07, 2017, 
Business Premium Collection; Global Newsstream. 
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